
CPC – an Eclipse framework for automated clone life cycle tracking

and update anomaly detection

Valentin Weckerle
Freie Universität Berlin

Abstract

Copy-Paste-Change (CPC) [1] is a framework for
copy and paste clone1 tracking and update anomaly2

warnings within the Eclipse IDE.
CPC represents the first step towards an integrated

and feature rich clone tracking environment which
increases the general awareness of clones in a software
system and provides notifications and warnings about
potential clone related errors.

It is our hope that CPC will provide in-depth data
about the day to day copy and paste habits of pro-
grammers in real environments which can help to im-
prove our overall understanding of the ‘Micro-process
of Software Development’, the small day to day ac-
tivities of a developer.

CPC is written in Java 1.5 and is licensed un-
der the GPL. It can be obtained from http://cpc.
anetwork.de [2].

1 Introduction

The ‘Micro-process of Software Development’ repre-
sents one of the areas of interest of the software engi-
neering research group of the Department of Com-
puter Science at the Freie Universität Berlin [3].
Sometimes also called ‘Actual Process’, the research
focuses on the small, every day actions of the pro-
grammer (i.e. browsing code or documentation, mod-
ifying a method, copying text). Copy and paste ac-
tions are of particular interest as they can introduce
source code duplications (clones) into a software sys-
tem.

The presence of clones in applications has long been
considered to be an indication of poor software qual-
ity [4, 5]. Yet past and current research findings
strongly indicate that cloning in software applications
is a pervasive phenomenon [6, 7]. Some studies report

1Clones are duplicated source code fragments within a soft-
ware application.

2Update anomalies can occur if a modification to the con-
tent of a clone is not propagated consistently to all other copies
of the source code fragment. A typical example are defect cor-
rections which usually need to be applied to all copies of the
defective code section. A developer can easily forget to update
some of the copies.

cloning rates of more than sixty percent in certain
applications [8]. Aggressive removal of clones with
support of automated clone detection and refactor-
ing approaches has thus received a lot of attention.

In light of newer research findings this tough
stance on cloning has been reconsidered and there
are now many advocates of a more lenient approach
to clone removal. It is argued that limitations of
the programming language often make cloning im-
possible to avoid [9, 10, 11, 12], that cloning can
be a viable design decision to attain specific design
goals [12, 13, 14], that the majority of clone groups
tend to be maintained consistently [11, 15] and that
there is a possibility that code sections are similar by
‘accident’ [16].

However, even the supporters of a more lenient
approach acknowledge that clones, or at least cer-
tain types of clones, in software systems are likely to
have negative effects on the long term maintenance
effort. Findings show that source sections which con-
tain clones are likely to require more modifications
during maintenance than clone free segments [17].

Many potential remedies have been suggested,
ranging from new language features to special pre-
processors or meta-languages [4, 18]. Aside of these
endeavours to eliminate cloning completely, a differ-
ent approach suggested by many studies, would be
to add special clone tracking features to the software
development environments [11, 12, 14, 19]. The idea
is to retain the convenience and positive aspects of
copy and paste cloning while at the same time trying
to ease or prevent some of its major pitfalls. This
perceived need for tool support is one of the key mo-
tivations for CPC.

In comparison with static clone detection tech-
niques, copy and paste actions by individual pro-
grammers have received only little attention by the
research community. The amount of available empir-
ical findings is thus very limited. Kim et al. con-
ducted a number of studies which highlighted the ex-
tend of copy and paste cloning by professional pro-
grammers [11, 12]. They observed an average of four
non-trivial copy and paste actions per hour. This lack
of data on copy and paste activities in real environ-
ments was another motivation for the development

1



of CPC. We’re hoping to obtain a large, heteroge-
neous data set of copy and paste activities and clone
evolution data for future clone research.

2 Related Work

In late 2007 Jablonski et al. started the work on CnP,
a copy and paste clone tracking plug-in for the Eclipse
IDE with very similar goals to those of CPC [20].
Currently only a prototype implementation of one as-
pect of CnP, consistent renaming of local identifiers
in copied source segments, is available [21]. The high
overlap between the goals of CPC and CnP makes
it likely that knowledge exchange and software reuse
opportunities will arise in the near future.

In mid 2007 Duala-Ekoko and Robillard presented
a clone tracking tool called CloneTracker [22]. Simi-
larly to CPC, it is an Eclipse plug-in which is aiming
at supporting the developer during software main-
tenance by highlighting clones and issuing warnings
when a member of a clone group is modified. Clone-
Tracker employs a 3rd party static clone detection
utility to identify duplicated source code segments
and does not take copy and paste activities of the
developer into account. Duala-Ekoko et al. use a
very interesting clone tracking approach. Instead of
storing line or character offsets and updating them
during source modifications, they try to extract a ro-
bust meta description of the clone segment from the
surrounding source code, the so called Clone Region
Descriptor.

Aside of these two a number of other clone tracking
and editing tools less similar to CPC exist. However,
none of these is making use of the copy and paste
activities of the developer. Instead they rely on static
clone detection approaches and thus face some of the
typical problems like low precision and low recall [23,
24, 25, 26, 27, 28, 29, 30].

3 Objective

CPC tries to provide a versatile and highly flexible
framework for clone tracking within the Eclipse IDE.
It was designed as a base for future work in the area of
clone tracking and facilitates the collection of data on
typical copy and paste cloning activities of program-
mers. It furthermore improves the general awareness
of cloning in an application by providing basic vi-
sualisations of clone data and establishes a basis for
future notifications of the developer about potential
update anomalies.

Aside of its framework aspects, CPC furthermore
provides a ready to use Eclipse plug-in which can be
used to reliably track copy and paste clones during
the development of Java applications.

4 Framework

During the development of CPC the framework as-
pects were of key importance. As it represents the
first step towards all encompassing copy and paste
clone tracking within the Eclipse IDE, a highly modu-
lar and flexible framework architecture which enables
3rd parties to easily extend or modify the existing
functionality was crucial.

This was complicated considerably by the fact that
most potential future uses of CPC and thus their API
requirements are still largely unknown. 3rd parties
may furthermore need to reuse parts of CPC at dif-
ferent levels of granularity. One contributor might
just want to provide a new clone visualisation, an-
other might want to reuse only the clone tracking
functionality of CPC and another party might want
to reuse everything ‘just’ with another definition of a
clone.

The CPC architecture currently consists of 28
highly independent plug-ins, 14 service providers, 101
interfaces, 355 classes and 66,573 lines of code. A de-
tailed description can be found in the CPC thesis [1].

5 Heuristics

Heuristics for the classification of clones, the calcu-
lation of the similarity between two clones and the
evaluation of clone modifications to identify update
anomalies represent the heart of CPC and directly
determine the accuracy of the clone update anomaly
detection. The basic heuristics shipped with CPC
can easily be extended, modified or removed by con-
tributors in order to improve the overall performance.
The CPC framework ensures that contributions from
multiple parties can work together seamlessly.

CPC currently uses the size, complexity and the
type of content of a clone for its classification. The
content analysis is based on an abstract syntax tree
representation of the clone’s content. Each clone is
assigned a number of classifications according to the
language elements which are contained within it. I.e.
a clone which contains an entire method would be
classified as ‘method’.

The similarity between two clones is based on the
Levenshtein distance between their contents after a
number of normalisation steps. During the prepro-
cessing step whitespaces are normalised and Java lan-
guage elements which are semantically equivalent, i.e.
comments, are normalised or removed.

Each modification of a clone is evaluated by the
clone modification heuristics in order to detect po-
tential update anomalies. The evaluation is based on
the clone classification, the nature of the change, the
difference between the content of all members of a
clone group as well as their age and location.

2



6 Challenges

A number of factors complicated the development of
CPC considerably. Some were related to the com-
plexity of the Eclipse platform others to defects and
inconsistent or inadequate APIs. The inherent com-
plexity made long term planning all but impossible as
it often proved very hard to estimate the time needed
for a specific part of the implementation. The com-
plexity together with CPC’s rather uncommon re-
quirements and its need for low level access to the
internals of the Eclipse platform represented another
serious concern. Considerable amounts of time were
spent on exploration of the Eclipse source code due
to lack of documentation in some areas.

Initial attempts to reuse existing clone tracking
software at our working group were stifled by per-
formance and dependency problems and some of the
relevant functionality provided by the Eclipse plat-
form could not be used due to inherent restrictions
or other shortcomings. In other areas inconsistent
behaviour of the Eclipse platform made extensive
workarounds necessary and some intended function-
ality like undo/redo support could not be realised due
to its negative performance impact.

However, the biggest problem proved to be the
Eclipse team repository provider APIs. Some crucial
aspects like registration of listeners for team opera-
tions were simply not supported at all and in other
areas existing APIs were either not implemented or
were not able to provide all the data required by CPC.
All in all this made it very hard to achieve one of the
original goals of CPC, the support of clone tracking
in distributed development teams. While possible,
the API shortcomings limit the reliability of these
remote synchronisation aspects of CPC to a degree
which prevented their inclusion into the shipped ver-
sion.

7 Data

The evaluation of copy and paste cloning data col-
lected during earlier experiments at the Freie Uni-
versität Berlin and the data collected during the test-
ing phase of the CPC development confirmed findings
made by Kim et al. and others [4, 12].

During the analysed experiments and observations,
programmers created an average of 24.76 new clones
per hour. Most clones were very small, however, on
average, 7.25 of these were larger than 80 characters
and 2.7 were even larger than 250 characters. An 8
hour working day would thus result in more than 50
large clones, a week in more than 250 and a month
in more than 1000.

The complete modification history which CPC
maintains for each clone instance provides further in-

sights into the evolution of copy and paste clones.
Only about 26 percent of all created clones were ever
modified. However, this figure includes all the very
small clone instances (median clone size was 25 char-
acters). When limiting the analysis to clones larger
than 80 characters more than 64 percent were mod-
ified. The majority of modified clones were changed
shortly after their creation and remained static from
that point onwards. The median delay between the
creation of a modified clone and its last modification
lies at two minutes and 37 seconds.

While some clone groups had up to 72 members,
most clone groups remained very small (group size:
average 2.39, median 2) and groups with more than
two members were mostly created within a short pe-
riod of time. The median delay between the creation
of the first and last member of such a clone group
was just 19 seconds.

So far the wealth of data collected by CPC could
only be analysed very superficially. The development
of tools and approaches to handle the large amount of
data is likely to prove fruitful. We also expect further
interesting insights once we collect copy and paste
data from a larger, heterogeneous developer base.

8 Summary

CPC represents the very first copy and paste clone
tracking utility available for the Eclipse platform
which is ready for general use. It supplies the Eclipse
IDE with a central integration point for clone track-
ing activities and represents an ideal base for all kinds
of tools which require clone or position tracking func-
tionality. CPC provides such extensions with a degree
of resilience against external file modifications which
has so far not been available within the Eclipse plat-
form. The very open and loosely coupled nature of
the CPC framework enables 3rd parties to reuse or ex-
change arbitrary parts of the implementation easily
and ensures that contributions from different parties
can coexist within the same CPC installation.

The evaluation of existing copy and paste data as
well as new data collected during the testing phase
of CPC yielded results on average cloning rates and
the pervasiveness of copy and paste clones which con-
firmed earlier published findings. The detailed clone
data collected by CPC, especially the clone modifi-
cation histories and general clone evolution informa-
tion, provides a new level of granularity much finer
than available before. The employed copy and paste
based approach furthermore provides a much higher
precision than any static clone detection approach.
Application of CPC might thus be able to provide
new insights into copy and paste operations and the
micro-process in general.

However, CPC represents only the first step on a

3



long road towards all encompassing clone tracking.
It currently ships with basic clone visualisations and
heuristics which need to be improved and extended
in order for CPC to become truly useful. Synergies
between CPC and CnP might prove fruitful in this
regard. Future improvements in the Eclipse team
provider APIs would furthermore open up new pos-
sibilities.

References

[1] Valentin Weckerle. CPC – an Eclipse framework
for automated clone life cycle tracking and up-
date anomaly detection. Master’s thesis, Freie
Universität Berlin, 2008.

[2] Valentin Weckerle. Official CPC website. http:
//cpc.anetwork.de.

[3] Sebastian Jekutsch. Micro-process of soft-
ware development website. https://www.inf.
fu-berlin.de/w/SE/MicroprocessHome.

[4] Chanchal Kumar Roy and James R. Cordy.
A survey on software clone detection research.
Technical Report 2007-541, Queen’s University
at Kingston, 2007.

[5] Robert Tairas. Clone detection literature
overview. http://www.cis.uab.edu/tairasr/
clones/literature/.

[6] Stéphane Ducasse, Matthias Rieger, and Serge
Demeyer. A language independent approach for
detecting duplicated code. In ICSM, pages 109–
118, 1999.

[7] Toshihiro Kamiya, Shinji Kusumoto, and Kat-
suro Inoue. Ccfinder: A multilinguistic token-
based code clone detection system for large
scale source code. IEEE Trans. Software Eng.,
28(7):654–670, 2002.

[8] Damith C. Rajapakse and Stan Jarzabek. An
investigation of cloning in web applications. In
David Lowe and Martin Gaedke, editors, ICWE,
volume 3579 of Lecture Notes in Computer Sci-
ence, pages 252–262. Springer, 2005.

[9] Hamid Abdul Basit, Damith C. Rajapakse, and
Stan Jarzabek. Beyond templates: a study of
clones in the stl and some general implications.
In Gruia-Catalin Roman, William G. Griswold,
and Bashar Nuseibeh, editors, ICSE, pages 451–
459. ACM, 2005.

[10] Hamid Abdul Basit, Damith C. Rajapakse, and
Stan Jarzabek. An empirical study on limits of
clone unification using generics. In William C.

Chu, Natalia Juristo Juzgado, and W. Eric
Wong, editors, SEKE, pages 109–114, 2005.

[11] Miryung Kim, Vibha Sazawal, David Notkin,
and Gail Murphy. An empirical study of code
clone genealogies. In ESEC/FSE-13: Proceed-
ings of the 10th European software engineer-
ing conference held jointly with 13th ACM SIG-
SOFT international symposium on Foundations
of software engineering, pages 187–196, New
York, NY, USA, 2005. ACM.

[12] Miryung Kim, Lawrence Bergman, Tessa Lau,
and David Notkin. An ethnographic study of
copy and paste programming practices in oopl.
In ISESE ’04: Proceedings of the 2004 Inter-
national Symposium on Empirical Software En-
gineering, pages 83–92, Washington, DC, USA,
2004. IEEE Computer Society.

[13] J.R. Cordy. Comprehending reality: Practical
challenges to software maintenance automation.
In Int’l Workshop on Program Comprehension,
pages 196–206. IEEE Computer Society Press,
2003.

[14] Cory Kapser and Michael W. Godfrey. ”cloning
considered harmful” considered harmful. In
WCRE, pages 19–28. IEEE Computer Society,
2006.

[15] Lerina Aversano, Luigi Cerulo, and Massimil-
iano Di Penta. How clones are maintained: An
empirical study. In René L. Krikhaar, Chris Ver-
hoef, and Giuseppe A. Di Lucca, editors, CSMR,
pages 81–90. IEEE Computer Society, 2007.

[16] Raihan Al-Ekram, Cory Kapser, Richard C.
Holt, and Michael W. Godfrey. Cloning by acci-
dent: an empirical study of source code cloning
across software systems. In ISESE, pages 376–
385. IEEE, 2005.

[17] Angela Lozano, Michel Wermelinger, and
Bashar Nuseibeh. Evaluating the harmfulness of
cloning: A change based experiment. In MSR,
page 18. IEEE Computer Society, 2007.

[18] Hongyu Zhang and Stanislaw Jarzabek. XVCL:
a mechanism for handling variants in software
product lines. Science of Computer Program-
ming, 53(3):381–407, 2004.

[19] Zoltan Adam Mann. Three public enemies: Cut,
copy, and paste. Computer, 39(7):31–35, 2006.

[20] Patricia Jablonski. Managing the copy-and-
paste programming practice in modern ides.
In Richard P. Gabriel, David F. Bacon,
Cristina Videira Lopes, and Guy L. Steele Jr.,

4



editors, OOPSLA Companion, pages 933–934.
ACM, 2007.

[21] Patricia Jablonski and Daqing Hou. Cren: A
tool for tracking copy-and-paste code clones
and renaming identifiers consistently in the ide.
OOPSLA - Workshop: Eclipse Technology Ex-
change, 2007.

[22] Ekwa Duala-Ekoko and Martin P. Robillard.
Tracking code clones in evolving software. In
ICSE, pages 158–167. IEEE Computer Society,
2007.

[23] Simon Giesecke. Clone-based Reengineering für
Java auf der Eclipse-Plattform. Master’s thesis,
Carl von Ossietzky Universität Oldenburg, 2003.

[24] Udo Borkowski. C4d website. http://www.
udo-borkowski.de/C4D/, 2004.

[25] Zhenmin Li, Shan Lu, Suvda Myagmar, and
Yuanyuan Zhou. Cp-miner: Finding copy-
paste and related bugs in large-scale software
code. IEEE Trans. Software Eng., 32(3):176–
192, 2006.

[26] Michael Toomim, Andrew Begel, and Susan L.
Graham. Managing duplicated code with linked
editing. In VL/HCC, pages 173–180. IEEE Com-
puter Society, 2004.

[27] Thomas Dudziak and Jan Wloka. Tool-
supported discovery and refactoring of structural
weaknesses in code. Master’s thesis, Technical
University of Berlin, 2002.

[28] Blue Edge Bulgaria. Simscan for eclipse.
http://blue-edge.bg/simscan/simscan_
help_r1.htm.

[29] PMD plug-in for Eclipse. http://pmd.
sourceforge.net.

[30] Iryoung Jeong and Seunghak Lee. Sdd: high
performance code clone detection system for
large scale source code. In Ralph Johnson and
Richard P. Gabriel, editors, OOPSLA Compan-
ion, pages 140–141. ACM, 2005.

5


